Fast Image Vector Quantization Using Sparse Oblique
Regression Trees

Rasul Kairgeldin Miguel A. Carreira-Perpinan

Dept. Computer Science & Engineering
University of California, Merced

September 5, 2025

S

MERCED



Vector Quantization (VQ) and Image Coding

>

VQ is widely used for image coding, representing image patches as vectors in
Euclidean space.

Each image patch is approximated using a finite set of vectors (the codebook).

Can be used to compress images by replacing high-dimensional patches with
compact codebook indices.
Codebooks are typically learned by minimizing squared Euclidean distortion.
The k-means algorithm is the standard method to optimize the codebook:
» Minimizes squared Euclidean distance (distortion) between patches and assigned
codebook vectors
» Alternates between assigning patches to codebook vectors and updating the
codebook vectors.
> Limitation: encoding cost is linear in K (number of codebook vectors), as each
test patch must be compared to all K vectors (slow for large K).
» Used as a baseline in comparisons with advanced VQ methods.



Tree-Structured VQ (TSVQ) for Efficient Encoding

» Encoding can be sped up using a tree-structured codebook:

» Ounly one root-to-leaf path is traversed (logarithmic time in K)
» Enables use of large codebooks without incurring prohibitive encoding cost

» Uses a binary tree (oblique or univariate) of depth A. In previous work, this
was learned by greedy recursive partitioning:

» Each decision node applies a hyperplane split
» Each leaf stores a constant codebook vector (or assignment)
» The tree partitions space into convex polytopes, unlike standard Voronoi
partitions
» Two major challenges:

» Designing decision nodes that balance flexibility and computational cost
» Learning such trees is nonconvex and nondifferentiable



Related Work

> Traditional regression trees (CART [1] or C5.0 [10]):
> Use greedy recursive partitioning (do not optimize a global loss function)
» Typically axis-aligned
» Result in large, often inaccurate trees—poor in high-dimensional settings
» Tree-Structured Vector Quantization (TSVQ):

» Builds codebooks hierarchically for fast encoding (logarithmic in codebook size)
» Commonly built with greedy [7, 5, 8] or random recursive partitioning [4]
» Often pruned post-training to improve rate-distortion performance [3, 9]
» Segmentation-based coding in image compression [11, 9, 6, 8]:
» Applies quantization to image segments for adaptive encoding
» Useful in medical image compression and other visual domains
» Limitations of previous tree-based VQ:

» Prior methods often lack global optimization
» May require deeper trees to achieve acceptable distortion levels



Summary of Our Contribution

» Propose a tree-structured VQ model using sparse oblique regression trees for
the first time so that they optimize the squared distortion properly
» Propose a hierarchical formulation of VQ:

» Replaces flat codebook assignments with a structure implicitly defined by a
decision tree
» Apply Tree Alternating Optimization (TAO) [2] to train VQ models for the
first time:
» Jointly learns both the sparse oblique hyperplane splits at internal tree nodes
and the codebook vectors in the leaves
» Demonstrate that the method achieves:

» Lower distortion compared to other TSVQ methods (close to k-means)
» Faster encoding time, especially for large codebooks



VQ with Sparse Oblique Decision Trees

» Binary tree of depth A
» Decision nodes D:
» Each contains a routing function Ri = {x1

44444 XN}
gi(x;0;): RP — {left,;,right,} C {DUL}
> g:(x;0;) = left, if W;-TX + wp; < 0, otherwise @
right, R2 Rs

» Leaf nodes L: @ @
> Each contains codebook vector p; € RP Ry Rs  Re Rs

P> Tree’s learnable parameters:
© = {(wi,woi) }iep U{n,;}jer

» Tree routing function T(x,,; @) directs a patch
X, from a root to a single leaf and predicts a
corresponding codeword p;




TSVQ Problem Formulation

» We formulate the tree-structured VQ problem as follows:

N
ngnZHXn—T(XnJG))|’2+)‘ ZHWZH1 (1)
n=1 1€D

» Problem (1) can be seen as generalizing the regular squared distortion over a
dataset of patches {x,}_; C RP from a flat codebook to a hierarchical one

> Assignments are not free variables, but implicitly determined by the tree
structure (not a Voronoi cell, but a trainable polytope)
» The codebook consists of the leaf node vectors

» Hyperparameters:
» Tree depth A controls primary model capacity and codebook size
» Sparsity parameter A can prune the tree by zeroing out weights, reducing
complexity (secondary control of codebook size)



Tree Alternating Optimization (TAQO): Separability Condition

» TAO is used to optimize objective function (eq (1))
> TAOQO iteratively updates each node’s parameters so as to decrease the
objective function

» TAO algorithm is based on 2 theorem: separability condition and reduced
problem over nodes.



TAQO: Separability Condition

Assume the parameters are not shared across nodes (i # j = 6; N 6; = )). Assume
nodes 7 and j are non-descendant of each other, and all other parameters

(Orest = O\{0;,0;}) are fixed.

Fixed

R;-reduced set



TAQO: Separability Condition

In general, if S C NV is a nonempty set of non-descendant nodes in the tree and
{0, : i € S} is the set of their parameters, then F(®) can be rewritten as:

E(®) = Z Ez(ez) + Erest(grest)
€S

Optimization of ¢ € S can be done in parallel, which drastically facilitates the
process.



TAQO: Reduced Problem Over Leaves

Reduced problem over leaves states that for a leaf j € £ the problem (1) is
reduced to an original loss (squared distortion) between the codeword of a leaf p;
and the leaf’s reduced set R;. It can be solved by finding a mean (similar to
k-means):
. 2
min 3 [~ @)
M
neR;

The solution is p; = —|7é‘ ZnG’R]' Xn
J



TAO: Reduced Problem Over Decision Nodes

» R, is the reduced set of decision node 3.
» Function l;, : C; = R as l, = L(yp, T2 (Xn;0;)), for any z € C; (child of 7).



TAQO: Reduced Problem Over Decision Nodes

This is NP-hard to optimize, but it can be approximated by a convex surrogate
(we use a weighted ¢1-regularized logistic regression classifier):

Hlln Z ynvgl Xnaei)) +)‘||W7«||1 (3)
0 neER;

where a weighted 0-1 loss Lin(Y;y,, ) of each sample n € R; is defined as
Lm(gmw y) = lzn(y) - lzn(yzn) Vy € {1eft7 right}a where Yin = arg miny lzn(y) is a
“pseudolabel” indicating the optimal child to route to.



TAQO: Optimization

At each TAO teration, nodes of the same depth are trained in parallel and the
algorithm proceeds in the reverse BF'S order.



Computational Complexity: Training and Encoding

Training complexity for a complete tree of depth A and K leaves on a dataset
{x,}N_, C RP:
» Root node: O(ADN) + O(cDN)(pseudolabel assignment and binary classifier
fitting with c iterations)
» Decision nodes at level A; can be optimized in parallel, the complexity is:
O(A;DN)+ O(cDN)
» Total complexity at most O(A2DN) + O(cADN)
Training complexity comparison to k-means for large K:
» Decision node training is ~ O(DN log? K), much faster than k-means’
O(DNK)
» Leaf optimization matches k-means’ centroid step at O(N D)

Test patch encoding is O(Dlog K) for a TSVQ (root-to-leaf path) versus O(DK)
for k-means



Experiments

2500 i i 500 i i
= —  Ours —  Ours
(é) 2000+ — RP-tree ] 4001 — RP-tree
~ 1500t — PCA-tree | 300+ PCA-tree |
g k-means k-means
= 10001 2001
=
S
@ 500 100
[
0 ' ' ' ' ' ' 0 ' ' ' ' ' '
10 15 20 25 30 35 40 45 10 15 20 25 30 35 40 45
Bit rate Bit rate

Figure: Distortion (MSE) vs bit rate (Rate-Distortion curve) for different patch size (from
left to right 5 x 5 and 15 x 15) of each method (TAO-tree, k-means, PCA-tree and
RP-tree) on Kodak dataset.



Experiments: Encoding Time and FLOPs vs Distortion

15 T

= — Ours —  OQOurs

2 — k-means — k-means

g

3

£ I

3 5

3

8

A 0

102 10° 10? 10° 100
15 - -

= —  Ours
Cé) — RP-tree
— 101 PCA-tree 1
=]

IS

b=

o 51

32

B2

= 0

0.02 0.04 0.06 0.08 0.1 0.12 6 8 10 12 14
FLOPs %108

Inference Time (s)

Figure: For given MSE proposed approach achieves much faster encoding time



Experiments: Quantization Quality with 10 x 10 Patch

k-means ours RP-tree _ PCA-tree
6.73 x 1073 7.34 x 1073 15.7 x 1073 9.02 x 1073
=
e}
[aN]
—
4.43 x 1073 4.67 x 1073 8.33 x 1073 5.34 x 1073
w0
p=
e - h
<t
[a]

Figure: Distortion (MSE) and bit rate is on top of each image. The proposed method, on
par with k-means, dlsplays the best image quality



Experiments: Comparison to k-means for Different Patch Size

5x5 10 x 10
785 x107% 14.2 x 10~°

ours:

k-means:

Figure: Quantization quality produced by k-means and our method for 21 bit encoding



Conclusion

A good image patch encoder should:
» Flexibly partition input space for low distortion
» Enable fast decoding
» Be learnable from data
The proposed method:
> A new vector quantizer based on sparse oblique regression trees
» Training via the Tree Alternating Optimization (TAO) algorithm
» Rate-distortion performance close to flat (k-means) codebooks
» Much faster encoding due to tree structure and sparsity
» Outperforms previous tree-structured vector quantizers in both distortion and
speed



References

(1]
[2]

(3]
[4]
5]

L. J. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees. Wadsworth,
Belmont, Calif., 1984.

M. A. Carreira-Perpinan and P. Tavallali. Alternating optimization of decision trees, with application to learning
sparse oblique trees. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems (NeurIPS), volume 31, pages 1211-1221. MIT Press, Cambridge,
MA, 2018.

P. A. Chou, T. Lookabaugh, and R. M. Gray. Optimal pruning with applications to tree-structured source coding and
modeling. IEEE Trans. Image Processing, 35(2):299-315, Mar. 1989.

S. Dasgupta and Y. Freund. Random projection trees for vector quantization. IEEE Trans. Information Theory, 55(7):
3229-3242, July 2009.

Y. Freund, S. Dasgupta, M. Kabra, and N. Verma. Learning the structure of manifolds using random projections. In
J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems (NIPS),
volume 20, pages 473-480. MIT Press, Cambridge, MA, 2008.

R. M. Gray. Vector quantization. IEEE ASSP Magazine, 1(2):4-29, Apr. 1984.

J. Lin and J. A. Storer. Design and performance of tree-structured vector quantizers. Information Processing &
Management, 30(6):851-862, Nov. — Dec. 1994.

L.-M. Po and C.-K. Chan. Adaptive dimensionality reduction techniques for tree-structured vector quantization.
IEEE Trans. Comm., 42(6):2246-2257, June 1994.

G. Poggi and R. A. Olshen. Pruned tree-structured vector quantization of medical images with segmentation and
improved prediction. IEEE Trans. Image Processing, 4(6):734—741, June 1995.

J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

H. Radha, M. Vetterli, and R. Leonardi. Image compression using binary space partitioning trees. IEEFE Trans. Image
Processing, 5(12):1610-1624, Dec. 1996.



	References

