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Vector Quantization (VQ) and Image Coding

◮ VQ is widely used for image coding, representing image patches as vectors in
Euclidean space.

◮ Each image patch is approximated using a finite set of vectors (the codebook).

◮ Can be used to compress images by replacing high-dimensional patches with
compact codebook indices.

◮ Codebooks are typically learned by minimizing squared Euclidean distortion.

◮ The k-means algorithm is the standard method to optimize the codebook:
◮ Minimizes squared Euclidean distance (distortion) between patches and assigned

codebook vectors
◮ Alternates between assigning patches to codebook vectors and updating the

codebook vectors.
◮ Limitation: encoding cost is linear in K (number of codebook vectors), as each

test patch must be compared to all K vectors (slow for large K).
◮ Used as a baseline in comparisons with advanced VQ methods.
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Tree-Structured VQ (TSVQ) for Efficient Encoding

◮ Encoding can be sped up using a tree-structured codebook:
◮ Only one root-to-leaf path is traversed (logarithmic time in K)
◮ Enables use of large codebooks without incurring prohibitive encoding cost

◮ Uses a binary tree (oblique or univariate) of depth ∆. In previous work, this
was learned by greedy recursive partitioning:
◮ Each decision node applies a hyperplane split
◮ Each leaf stores a constant codebook vector (or assignment)

◮ The tree partitions space into convex polytopes, unlike standard Voronoi
partitions

◮ Two major challenges:
◮ Designing decision nodes that balance flexibility and computational cost
◮ Learning such trees is nonconvex and nondifferentiable
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Related Work

◮ Traditional regression trees (CART [1] or C5.0 [10]):
◮ Use greedy recursive partitioning (do not optimize a global loss function)
◮ Typically axis-aligned
◮ Result in large, often inaccurate trees—poor in high-dimensional settings

◮ Tree-Structured Vector Quantization (TSVQ):
◮ Builds codebooks hierarchically for fast encoding (logarithmic in codebook size)
◮ Commonly built with greedy [7, 5, 8] or random recursive partitioning [4]
◮ Often pruned post-training to improve rate-distortion performance [3, 9]

◮ Segmentation-based coding in image compression [11, 9, 6, 8]:
◮ Applies quantization to image segments for adaptive encoding
◮ Useful in medical image compression and other visual domains

◮ Limitations of previous tree-based VQ:
◮ Prior methods often lack global optimization
◮ May require deeper trees to achieve acceptable distortion levels
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Summary of Our Contribution

◮ Propose a tree-structured VQ model using sparse oblique regression trees for
the first time so that they optimize the squared distortion properly

◮ Propose a hierarchical formulation of VQ:
◮ Replaces flat codebook assignments with a structure implicitly defined by a

decision tree

◮ Apply Tree Alternating Optimization (TAO) [2] to train VQ models for the
first time:
◮ Jointly learns both the sparse oblique hyperplane splits at internal tree nodes

and the codebook vectors in the leaves

◮ Demonstrate that the method achieves:
◮ Lower distortion compared to other TSVQ methods (close to k-means)
◮ Faster encoding time, especially for large codebooks
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VQ with Sparse Oblique Decision Trees

◮ Binary tree of depth ∆

◮ Decision nodes D:
◮ Each contains a routing function

gi(x; θi): R
D → {lefti, righti} ⊂ {D ∪ L}

◮ gi(x; θi) = lefti if w
T
i x+ w0i < 0, otherwise

righti

◮ Leaf nodes L:
◮ Each contains codebook vector µj ∈ R

D

◮ Tree’s learnable parameters:
Θ = {(wi, w0i)}i∈D ∪ {µj}j∈L

◮ Tree routing function T(xn;Θ) directs a patch
xn from a root to a single leaf and predicts a
corresponding codeword µj

R1 = {x1, . . . ,xN}

g1(x;θ1)

g2(x;θ2) g3(x;θ3)

µ4 µ5 µ6 µ7

R2 R3

R4 R5 R6 R7
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TSVQ Problem Formulation

◮ We formulate the tree-structured VQ problem as follows:

min
Θ

N
∑

n=1

‖xn −T(xn;Θ)‖2 + λ
∑

i∈D

‖wi‖1 (1)

◮ Problem (1) can be seen as generalizing the regular squared distortion over a
dataset of patches {xn}

N
n=1 ⊂ R

D from a flat codebook to a hierarchical one

◮ Assignments are not free variables, but implicitly determined by the tree
structure (not a Voronoi cell, but a trainable polytope)

◮ The codebook consists of the leaf node vectors

◮ Hyperparameters:
◮ Tree depth ∆ controls primary model capacity and codebook size
◮ Sparsity parameter λ can prune the tree by zeroing out weights, reducing

complexity (secondary control of codebook size)
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Tree Alternating Optimization (TAO): Separability Condition

◮ TAO is used to optimize objective function (eq (1))

◮ TAO iteratively updates each node’s parameters so as to decrease the
objective function

◮ TAO algorithm is based on 2 theorem: separability condition and reduced
problem over nodes.
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TAO: Separability Condition

Assume the parameters are not shared across nodes (i 6= j ⇒ θi ∩ θj = ∅). Assume
nodes i and j are non-descendant of each other, and all other parameters
(Θrest = Θ\{θi,θj}) are fixed.

Ri–reduced set

Fixed
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TAO: Separability Condition

In general, if S ⊂ N is a nonempty set of non-descendant nodes in the tree and
{θi : i ∈ S} is the set of their parameters, then E(Θ) can be rewritten as:

E(Θ) =
∑

i∈S

Ei(θi) + Erest(Θrest)

Optimization of i ∈ S can be done in parallel, which drastically facilitates the
process.
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TAO: Reduced Problem Over Leaves

Reduced problem over leaves states that for a leaf j ∈ L the problem (1) is
reduced to an original loss (squared distortion) between the codeword of a leaf µj

and the leaf’s reduced set Rj . It can be solved by finding a mean (similar to
k-means):

min
µj

∑

n∈Rj

∥

∥xn − µj

∥

∥

2
(2)

The solution is µj =
1

|Rj |

∑

n∈Rj
xn
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TAO: Reduced Problem Over Decision Nodes

g2(x;θ2)

T4(x;Θ4) T5(x;Θ5)

left right

reduced
set R2

◮ Ri is the reduced set of decision node i.

◮ Function lin : Ci → R as lin = L(yn,Tz(xn;Θz)), for any z ∈ Ci (child of i).
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TAO: Reduced Problem Over Decision Nodes

This is NP-hard to optimize, but it can be approximated by a convex surrogate
(we use a weighted ℓ1-regularized logistic regression classifier):

min
θi

∑

n∈Ri

L(yn, gi(xn;θi)) + λ ‖wi‖1 (3)

where a weighted 0-1 loss Lin(yin, ·) of each sample n ∈ Ri is defined as
Lin(yin, y) = lin(y)− lin(yin) ∀y ∈ {left, right}, where yin = argminy lin(y) is a
“pseudolabel” indicating the optimal child to route to.
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TAO: Optimization

At each TAO teration, nodes of the same depth are trained in parallel and the
algorithm proceeds in the reverse BFS order.
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Computational Complexity: Training and Encoding

Training complexity for a complete tree of depth ∆ and K leaves on a dataset
{xn}

N
n=1 ⊂ R

D:

◮ Root node: O(∆DN) +O(cDN)(pseudolabel assignment and binary classifier
fitting with c iterations)

◮ Decision nodes at level ∆i can be optimized in parallel, the complexity is:
O(∆iDN) +O(cDN)

◮ Total complexity at most O(∆2DN) +O(c∆DN)

Training complexity comparison to k-means for large K:

◮ Decision node training is ≈ O(DN log2 K), much faster than k-means’
O(DNK)

◮ Leaf optimization matches k-means’ centroid step at O(ND)

Test patch encoding is O(D logK) for a TSVQ (root-to-leaf path) versus O(DK)
for k-means
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Experiments
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Figure: Distortion (MSE) vs bit rate (Rate-Distortion curve) for different patch size (from
left to right 5× 5 and 15× 15) of each method (TAO-tree, k-means, PCA-tree and
RP-tree) on Kodak dataset.
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Experiments: Encoding Time and FLOPs vs Distortion
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Figure: For given MSE proposed approach achieves much faster encoding time
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Experiments: Quantization Quality with 10× 10 Patch
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Figure: Distortion (MSE) and bit rate is on top of each image. The proposed method, on
par with k-means, displays the best image quality
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Experiments: Comparison to k-means for Different Patch Size

5× 5 10× 10 15× 15
7.85 × 10−3 14.2× 10−3 17.8× 10−3

ou
rs
:

6.94 × 10−3 13.1× 10−3 16.5× 10−3

k
-m

ea
n
s:

Figure: Quantization quality produced by k-means and our method for 21 bit encoding
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Conclusion

A good image patch encoder should:

◮ Flexibly partition input space for low distortion

◮ Enable fast decoding

◮ Be learnable from data

The proposed method:

◮ A new vector quantizer based on sparse oblique regression trees

◮ Training via the Tree Alternating Optimization (TAO) algorithm

◮ Rate-distortion performance close to flat (k-means) codebooks

◮ Much faster encoding due to tree structure and sparsity

◮ Outperforms previous tree-structured vector quantizers in both distortion and
speed
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