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Vector Quantization (VQ) and Image Coding

>

VQ is widely used for image coding, representing image patches as vectors in
Euclidean space.

Each image patch is approximated using a finite set of vectors (the codebook).

Can be used to compress images by replacing high-dimensional patches with
compact codebook indices.
Codebooks are typically learned by minimizing squared Euclidean distortion.
The k-means algorithm is the standard method to optimize the codebook:
» Minimizes squared Euclidean distance (distortion) between patches and assigned
codebook vectors
» Alternates between assigning patches to codebook vectors and updating the
codebook vectors.
> Limitation: encoding cost is linear in K (number of codebook vectors), as each
test patch must be compared to all K vectors (slow for large K).
» Used as a baseline in comparisons with advanced VQ methods.



Tree-Structured VQ (TSVQ) for Efficient Encoding

» Encoding can be sped up using a tree-structured codebook:

» Ounly one root-to-leaf path is traversed (logarithmic time in K)
» Enables use of large codebooks without incurring prohibitive encoding cost

» Uses a binary tree (oblique or univariate) of depth A. In previous work, this
was learned by greedy recursive partitioning:

» Each decision node applies a hyperplane split
» Each leaf stores a constant codebook vector (or assignment)
» The tree partitions space into convex polytopes, unlike standard Voronoi
partitions
» Two major challenges:

» Designing decision nodes that balance flexibility and computational cost
» Learning such trees is nonconvex and nondifferentiable



Related Work

> Traditional regression trees (CART [1] or C5.0 [10]):
> Use greedy recursive partitioning (do not optimize a global loss function)
» Typically axis-aligned
» Result in large, often inaccurate trees—poor in high-dimensional settings
» Tree-Structured Vector Quantization (TSVQ):

» Builds codebooks hierarchically for fast encoding (logarithmic in codebook size)
» Commonly built with greedy [7, 5, 8] or random recursive partitioning [4]
» Often pruned post-training to improve rate-distortion performance [3, 9]
» Segmentation-based coding in image compression [11, 9, 6, 8]:
» Applies quantization to image segments for adaptive encoding
» Useful in medical image compression and other visual domains
» Limitations of previous tree-based VQ:

» Prior methods often lack global optimization
» May require deeper trees to achieve acceptable distortion levels



Summary of Our Contribution

» Propose a tree-structured VQ model using sparse oblique regression trees for
the first time so that they optimize the squared distortion properly
» Propose a hierarchical formulation of VQ:

» Replaces flat codebook assignments with a structure implicitly defined by a
decision tree
» Apply Tree Alternating Optimization (TAO) [2] to train VQ models for the
first time:
» Jointly learns both the sparse oblique hyperplane splits at internal tree nodes
and the codebook vectors in the leaves
» Demonstrate that the method achieves:

» Lower distortion compared to other TSVQ methods (close to k-means)
» Faster encoding time, especially for large codebooks



VQ with Sparse Oblique Decision Trees

» Binary tree of depth A
» Decision nodes D:
» Each contains a routing function Ri = {x1
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» Tree routing function T(x,,; @) directs a patch
X, from a root to a single leaf and predicts a
corresponding codeword p;




TSVQ Problem Formulation

» We formulate the tree-structured VQ problem as follows:
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» Problem (1) can be seen as generalizing the regular squared distortion over a
dataset of patches {x,}_; C RP from a flat codebook to a hierarchical one

> Assignments are not free variables, but implicitly determined by the tree
structure (not a Voronoi cell, but a trainable polytope)
» The codebook consists of the leaf node vectors

» Hyperparameters:
» Tree depth A controls primary model capacity and codebook size
» Sparsity parameter A can prune the tree by zeroing out weights, reducing
complexity (secondary control of codebook size)



Tree Alternating Optimization (TAQO): Separability Condition

» TAO is used to optimize objective function (eq (1))
> TAOQO iteratively updates each node’s parameters so as to decrease the
objective function

» TAO algorithm is based on 2 theorem: separability condition and reduced
problem over nodes.



TAQO: Separability Condition

Assume the parameters are not shared across nodes (i # j = 6; N 6; = )). Assume
nodes 7 and j are non-descendant of each other, and all other parameters

(Orest = O\{0;,0;}) are fixed.

Fixed

R;-reduced set



TAQO: Separability Condition

In general, if S C NV is a nonempty set of non-descendant nodes in the tree and
{0, : i € S} is the set of their parameters, then F(®) can be rewritten as:

E(®) = Z Ez(ez) + Erest(grest)
€S

Optimization of ¢ € S can be done in parallel, which drastically facilitates the
process.



TAQO: Reduced Problem Over Leaves

Reduced problem over leaves states that for a leaf j € £ the problem (1) is
reduced to an original loss (squared distortion) between the codeword of a leaf p;
and the leaf’s reduced set R;. It can be solved by finding a mean (similar to
k-means):
. 2
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TAO: Reduced Problem Over Decision Nodes

» R, is the reduced set of decision node 3.
» Function l;, : C; = R as l, = L(yp, T2 (Xn;0;)), for any z € C; (child of 7).



TAQO: Reduced Problem Over Decision Nodes

This is NP-hard to optimize, but it can be approximated by a convex surrogate
(we use a weighted ¢1-regularized logistic regression classifier):
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where a weighted 0-1 loss Lin(Y;y,, ) of each sample n € R; is defined as
Lm(gmw y) = lzn(y) - lzn(yzn) Vy € {1eft7 right}a where Yin = arg miny lzn(y) is a
“pseudolabel” indicating the optimal child to route to.



TAQO: Optimization

At each TAO teration, nodes of the same depth are trained in parallel and the
algorithm proceeds in the reverse BF'S order.



Computational Complexity: Training and Encoding

Training complexity for a complete tree of depth A and K leaves on a dataset
{x,}N_, C RP:
» Root node: O(ADN) + O(cDN)(pseudolabel assignment and binary classifier
fitting with c iterations)
» Decision nodes at level A; can be optimized in parallel, the complexity is:
O(A;DN)+ O(cDN)
» Total complexity at most O(A2DN) + O(cADN)
Training complexity comparison to k-means for large K:
» Decision node training is ~ O(DN log? K), much faster than k-means’
O(DNK)
» Leaf optimization matches k-means’ centroid step at O(N D)

Test patch encoding is O(Dlog K) for a TSVQ (root-to-leaf path) versus O(DK)
for k-means



Experiments
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Figure: Distortion (MSE) vs bit rate (Rate-Distortion curve) for different patch size (from
left to right 5 x 5 and 15 x 15) of each method (TAO-tree, k-means, PCA-tree and
RP-tree) on Kodak dataset.



Experiments: Encoding Time and FLOPs vs Distortion
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Figure: For given MSE proposed approach achieves much faster encoding time



Experiments: Quantization Quality with 10 x 10 Patch
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Figure: Distortion (MSE) and bit rate is on top of each image. The proposed method, on
par with k-means, dlsplays the best image quality



Experiments: Comparison to k-means for Different Patch Size
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Figure: Quantization quality produced by k-means and our method for 21 bit encoding



Conclusion

A good image patch encoder should:
» Flexibly partition input space for low distortion
» Enable fast decoding
» Be learnable from data
The proposed method:
> A new vector quantizer based on sparse oblique regression trees
» Training via the Tree Alternating Optimization (TAO) algorithm
» Rate-distortion performance close to flat (k-means) codebooks
» Much faster encoding due to tree structure and sparsity
» Outperforms previous tree-structured vector quantizers in both distortion and
speed
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