
1/28

Neurosymbolic models based on
hybrids of convolutional neural networks and decision trees

Rasul Kairgeldin Miguel Á. Carreira-Perpiñán

Dept. Computer Science & Engineering
University of California, Merced

October 10, 2025

2/28

Motivation
Symbolic AI:

◮ Includes rule-based and logic-based models

◮ Transparent and interpretable reasoning

◮ Enables trust and correctness guarantees

Neural AI:

◮ Dominated by deep neural networks (NNs)

◮ Excels at perceptual tasks (e.g. image, text)

◮ Requires high compute, memory, and energy

◮ Acts as a black box—hard to interpret or debug

Neurosymbolic AI:

◮ Combines strengths of neural and symbolic AI

◮ Active research area [3, 4, 2]
◮ E.g. combination of CNNs and decision trees (DTs):

◮ CNN extracts complex features from input (e.g. images)
◮ DT performs classification in an interpretable way

3/28

Summary of Our Contribution

◮ Introduce a ”type-3 or Neuro—Symbolic” model (per Kautz [4]) to the
neurosymbolic community

◮ Modify the TAO algorithm to learn sparse oblique decision trees with
controllable sparsity for better interpretability and high accuracy

◮ Propose a way to interpret the results:
◮ Visualizing receptive fields of neurons critical for class discrimination
◮ Using density maps to show where neurons ”look” in the image
◮ Demonstrating neuron-level detection of key features (e.g., gap vs. corner in

Fashion MNIST)

4/28

The neural net / tree hybrid model

x

D input
features

y

K output
classes

y = f(x),
entire neural net

z = F(x),
F neural net features

y = M(z),
classifier part
(mimicked
by tree)

◮ CNN: y = M(F(x)), where x is the image, F the convolutional layers, and M the
fully-connected layers.

◮ Replace M with a sparse oblique tree T trained to map F(xn) to M(F(xn)) in
teacher-student manner. The hybrid T(F(x)) is interpretable and approximately
functionally equivalent to M ◦ F.

5/28

Sparse Oblique Decision Trees

◮ Binary tree of depth ∆

◮ Decision nodes D:
◮ Each contains a routing function

gi(x; θi): R
D → {lefti, righti} ⊂ {D ∪ L}

◮ gi(x; θi) = lefti if w
T
i x+ w0i < 0, otherwise

righti

◮ Leaf nodes L:
◮ Each contains a constant label classifier that

outputs a single class cj ∈ {1, . . . ,K}

◮ Tree’s learnable parameters:
Θ = {(wi, w0i)}i∈D ∪ {cj}j∈L

◮ Tree routing function T(xn;Θ) directs a patch
xn from a root to a single leaf and predicts a
corresponding class cj

R1 = {x1, . . . ,xN}

g1(x;θ1)

g2(x;θ2) g3(x;θ3)

c4 c5 c6 c7

R2 R3

R4 R5 R6 R7

6/28

Sparse Oblique Decision Trees

Univ.: ∆=8, 15 leaves, 4% error sparse oblique: ∆=3, 5 leaves, 2% error

x1

x
2

x1

x
2

Figure: Partitioning by a univariate (left) and sparse oblique tree (right). By allowing
feature correlations, oblique trees achieve better performance with much smaller trees.

7/28

Formulation of the tree learning problem

◮ Given a oblique tree T(x,Θ) of a fixed structure (e.g. a complete tree of
depth ∆) and initial parameters (e.g. random), we use Tree Alternating
Optimization (TAO [1]) to minimize the following objective:

E(Θ) =

N
∑

n=1

L(yn,T(xn;Θ)) + λ
∑

i∈D

hα(|Ri|) ‖wi‖1

hα(t) =

{

1, t = 0

tα, t > 0

(1)

◮ where L(·, ·) is the loss, Θ = {(wi, wi0)}i∈D ∪ {cj}j∈L are the set of all
learnable model parameters, ℓ1 is penalty over the weight vectors to promote
sparsity via hyperparameters λ ≥ 0, Ri is the reduced set of node i and |Ri|
its cardinality.

8/28

Intuitive explanation of the TAO algorithm

◮ TAO optimizes iteratively an arbitrary objective function over the parameters
of the tree model

◮ Updates each node’s parameters in sequence by solving a reduced problem

◮ Iterates over nodes in reverse BFS order

◮ For non-descendant nodes can update parameters in parallel

◮ Decreases objective funciton monotonically

9/28

The role of the regularization

◮ Hyperparameter λ controls overall sparsity in the tree

◮ Large λ also induces pruning → automatic tree structure learning

◮ Shallow nodes (e.g., root) become denser than deeper nodes (e.g., leaf parents)

◮ To address it, introduce hyperparameter α to control node-level sparsity
relative to the number of instances handled

10/28

Tree Alternating Optimization (TAO): Separability Condition

◮ TAO is used to optimize objective function (eq (1))

◮ TAO iteratively updates each node’s parameters so as to decrease the
objective function

◮ TAO algorithm is based on 2 theorem: separability condition and reduced
problem over nodes.

11/28

TAO: Separability Condition

Assume the parameters are not shared across nodes (i 6= j ⇒ θi ∩ θj = ∅). Assume
nodes i and j are non-descendant of each other, and all other parameters
(Θrest = Θ\{θi,θj}) are fixed.

Ri–reduced set

Fixed

12/28

TAO: Separability Condition

In general, if S ⊂ N is a nonempty set of non-descendant nodes in the tree and
{θi : i ∈ S} is the set of their parameters, then E(Θ) can be rewritten as:

E(Θ) =
∑

i∈S

Ei(θi) + Erest(Θrest)

Optimization of i ∈ S can be done in parallel, which drastically facilitates the
process.

13/28

TAO: Reduced Problem Over Leaves

Reduced problem over leaves states that for a leaf j ∈ L the problem (1) is
reduced to a form involving the original loss but only over the parameters of the
leaf predictor function. It can be solved by finding the majority class (or mean
value of the samples in the reduced set for regression)

14/28

TAO: Reduced Problem Over Decision Nodes

g2(x;θ2)

T4(x;Θ4) T5(x;Θ5)

left right

reduced
set R2

◮ Ri is the reduced set of decision node i.

◮ Function lin : Ci → R as lin = L(yn,Tz(xn;Θz)), for any z ∈ Ci (child of i).

15/28

TAO: Reduced Problem Over Decision Nodes

This is NP-hard to optimize, but it can be approximated by a convex surrogate
(we use a weighted ℓ1-regularized logistic regression classifier):

min
θi

∑

n∈Ri

L(yn, gi(xn;θi)) + λhα(|Ri|) ‖wi‖1 (2)

where a weighted 0-1 loss Lin(yin, ·) of each sample n ∈ Ri is defined as
Lin(yin, y) = lin(y)− lin(yin) ∀y ∈ {left, right}, where yin = argminy lin(y) is a
“pseudolabel” indicating the optimal child to route to.

16/28

TAO: Reduced Problem Over Decision Nodes

◮ We can rewrite RP objective as ”avg-loss + λ′ reg”, with λ′ = λNα−1
i ,

avg-loss is the loss per instance in node i; reg = ‖wi‖1 (an effective sparsity

hyperparameter)

◮ α < 1: large RS penalized less → the root is denser

◮ α = 1: all nodes penalized equally

◮ α > 1: large RS penalized more → the root is sparser

◮ Can produce trees that are sparser and more accurate than regular TAO (i.e.,
α = 0)

17/28

TAO: Optimization

At each TAO teration, nodes of the same depth are trained in parallel and the
algorithm proceeds in the reverse BFS order.

18/28

TAO: Optimization

input training set; initial tree T(·;Θ) of depth ∆
N0, . . . ,N∆ ← nodes at depth 0, . . . ,∆, respectively
generate R1 ← {1, . . . , N} using initial tree
repeat

for d = ∆ down to 0
parfor i ∈ Nd

if i is a leaf then
θi ← fit a leaf predictor
gi on reduced set Ri

else

generate pseudolabels yn for each point n ∈ Ri

θi ← minimizer of the reduced problem:
∑

n∈Ri
L(yn, gi(xn; θi)) + λhα(|Ri|) ‖wi‖1

update Ri for each node
until stop
prune dead subtrees of T
return T

19/28

Computational Complexity: Training and Inference

Training complexity for a complete tree of depth ∆ and K leaves on a dataset
{xn}

N
n=1 ⊂ R

D:

◮ Root node: O(∆DN) +O(cDN)(pseudolabel assignment and binary classifier
fitting with c iterations)

◮ Decision nodes at level ∆i can be optimized in parallel, the complexity is:
O(∆iDN) +O(cDN)

◮ Total complexity at most O(∆2DN) +O(c∆DN) ≈ O(DN log2K)

◮ Inference time is O(D logK)

20/28

The neural net / tree hybrid model

x

D input
features

y

K output
classes

y = f(x),
entire neural net

z = F(x),
F neural net features

y = M(z),
classifier part
(mimicked
by tree)

◮ Our neurosymbolic model consists of the convolutional layers of a LeNet NN followed by a
tree of depth 4

◮ The tree is a very close mimic to the NN classifier layers, so it can replace them and we can
trust to explain the NN features and classification

21/28

Experiments: Sparse Oblique Decision Tree Visualization

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0
1
2
3
4
5
6
7
8
9

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0
1
2
3
4
5
6
7
8
9

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0
1
2
3
4
5
6
7
8
9

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0
1
2
3
4
5
6
7
8
9

−0.4

−0.2

0.0

0.2

0.4

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0
1
2
3
4
5
6
7
8
9

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0
1
2
3
4
5
6
7
8
9

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

0
1
2
3
4
5
6
7
8
9

A: 60 000
‖w‖0 = 122

B: 34 274
‖w‖0 = 219

C: 25 726
‖w‖0 = 143

D: 11 787
‖w‖0 = 193

E: 22 487
‖w‖0 = 176

F: 12 398
‖w‖0 = 148

G: 13 328
‖w‖0 = 49

H: 10 424
‖w‖0 = 87

I: 12 063
‖w‖0 = 51

J: 6 439
‖w‖0 = 32

K: 7 338
‖w‖0 = 66

6165 5622

4530 5894 6147 5916 6080 359

5959 5990

1658 5680

Figure: Tree trained on LeNet embeddings on Fashion MNIST dataset λ = 0.001, α = 1.
Etrain = 5.4%, Etest = 11.7% and # non-zero params is 1298

22/28

Experiments: Sparse Oblique Decision Tree Class Separation

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

1. Ankle boot
2. Bag
3. Sneaker
4. Shirt
5. Sandal
6. Coat
7. Dress
8. Pullover
9. Trouser
10. Top1.

2.
3.
4. Shirt
5.
6. Coat
7. Dress
8. Pullover
9. Trouser

10. Top

1. Ankle boot
2. Bag
3. Sneaker
4.
5. Sandal
6.
7.
8.
9.

10.1.
2.
3.
4. Shirt
5.
6. Coat
7.
8.
9.
10.

1.
2.
3.
4.
5.
6.
7. Dress
8. Pullover
9. Trouser
10. Top

1.
2. Bag
3. Sneaker
4.
5. Sandal
6.
7.
8.
9.
10.

1. Ankle boot
2. Bag
3.
4.
5.
6.
7. Dress
8.
9.
10.

1.
2.
3.
4.
5.
6.
7. Dress
8. Pullover
9.
10.

1.
2.
3.
4.
5.
6.
7.
8.
9. Trouser
10. Top

1.
2. Bag
3. Sneaker
4.
5.
6.
7.
8.
9.
10.

1.
2. Bag
3.
4.
5.
6.
7. Dress
8.
9.
10.

6165 5622

4530 5894 6147 5916 6080 359

5959 5990

1658 5680

Figure: Class separation for each decision node. Tree trained on LeNet embeddings on
Fashion MNIST dataset λ = 0.001, α = 1

23/28

Experiments: Density Map
A: 60 000
‖w‖0 = 122

B: 34 274
‖w‖0 = 219

C: 25 726
‖w‖0 = 143

D: 11 787
‖w‖0 = 193

E: 22 487
‖w‖0 = 176

F: 12 398
‖w‖0 = 148

G: 13 328
‖w‖0 = 49

H: 10 424
‖w‖0 = 87

I: 12 063
‖w‖0 = 51

J: 6 439
‖w‖0 = 32

K: 7 338
‖w‖0 = 66

6165 5622

4530 5894 6147 5916 6080 359

5959 5990

1658 5680

Figure: Tree trained on LeNet embeddings on Fashion MNIST dataset λ = 0.001, α = 1.
Similar to fig. 24 each decision node contains ”density” map of the receptive fields. Each
leaf node contains contour produced by the parent decision node weights and density map.

24/28

Experiments: Where is decision node looking in the image?

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

0.0

0.2

0.4

0.6

0.8

1.0

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

0.2

0.4

0.6

0.8

1.0

25/28

Experiments: Changing Classification

Figure: Sample of class 8 misclassified as 7 (Left). Receptive field of neurons from the last
convolutional layer of Lenet with largest positive (red) and negative (blue) weights in
oblique decision node J (Middle). Small changes in the intersection of two regions fixed the
misclassification error (Right).

26/28

Conclusion

◮ Added new regularization and modified the TAO algorithm to control feature
sparsity across the tree

◮ Two-stage training:
◮ Train CNN with SGD
◮ Train a tree with TAO to replace CNN’s fully connected layers using a

teacher-student approach

◮ Combines CNN’s representational power with tree’s interpretability

◮ Enables:
◮ Tracing which neurons affect which classes
◮ Visualizing where neurons focus in the image.
◮ Explaining (mis)classifications
◮ Editing images to change classification

27/28

Future Work

◮ LLM probing using sparse oblique decision trees

◮ Joint optimization of NN and a tree

28/28

References

[1] M. Á. Carreira-Perpiñán and P. Tavallali. Alternating optimization of decision trees, with application to learning sparse
oblique trees. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances
in Neural Information Processing Systems (NeurIPS), volume 31, pages 1211–1221. MIT Press, Cambridge, MA, 2018.

[2] A. d’Avila Garcez and L. C. Lamb. Neurosymbolic AI: The 3rd wave. Artificial Intelligence Review, 56:12387–12406,
2023.

[3] P. Hitzler and M. K. Sarker, editors. Neuro-Symbolic Artificial Intelligence: The State of the Art. Number 342 in
Frontiers in Artificial Intelligence and Applications. IOS Press, 2021.

[4] H. Kautz. The third AI summer. AI Magazine, 43(1):105–125, Spring 2022.

	References

